How Brightness and Contrast Impact NDT Inspections

  •  

In this article, we look at how perception and neighboring objects can have a significant, but currently unmeasured, impact on probability of detection

July 18, 2017  |  by Emily Gibbons, Marketing Manager (previously Magnetic Particle Product Manager)

 

Most nondestructive tests which rely on colored or fluorescent materials to identify discontinuities use the human eye as the primary detector. In other words: the inspector needs to see the indication for the test to be successful.

There are many factors which can impact an inspector’s ability to identify an indication such as the amount of ambient light or UV light present, an inspector’s vision acuity and dark adaptation when performing an inspection are just a few examples which are commonly sighted and controlled for under industry standards.

However, there are other factors which influence the ability of an inspector to visually detect an indication which are often under considered when setting-up or performing a magnetic particle inspection or penetrant test procedure.

 

How Brightness and Color Influence What You See

What do you see when you look at this image?

Green Spirals 1

Copyright Akiyoshi Kitaoka 2002 (c)Akiyoshi Kitaoka "Trick eyes" Tokyo: KANZEN 2002

I see a spiral of bright yellow-green and a spiral of turquoise green intercepted by rays of yellow and blue. Clearly, there are two very different shades of green.

But I’m wrong… There is only one shade of green. The bright yellow-green spiral and the turquoise green spiral are exactly the same color.

Don’t believe me? You could measure the pixel color values of each spiral or use a colorimeter to measure the color, but the results will show you the bright yellow-green and the turquoise green in the image above are the same bright green color.
 

To prove this, we can start by replacing the blue background in the first image with black:

Green Spirals 2

The two green spirals start to look like they aren’t so different. I still see two different shades of green but the turquoise spiral looks more green to me in this image.
 

Next we will remove the yellow background:

Green Spirals 3

Now it is obvious the spirals are the same shade of green.
 

Think I changed the colors on you?

If we juxtapose the original image (with the yellow and blue background) with the final modified image (with the black background) you can follow a single spiral to see that the shade of green shade stays the same.

Green Spirals 4

 

This demonstration is more than an impressive parlor trick – it can be used to show how subjective our color perceptions can be during fluorescent NDT inspections.

So how does this illusion work?

According to Ben Backus of Backus Labs and SUNY's College of Optometry,
“This illusion works because the visual system measures color at a coarser spatial scale than luminance (i.e., brightness). Thus the apparent color of a small object can be contaminated by the colors of neighboring objects, which is very nicely demonstrated by this illusion. When green is sandwiched between yellow it looks much yellower than when it is sandwiched between blue.”

In other words, how we perceive the color of an object is often determined by the colors and brightness of neighboring objects, and this effect is amplified when looking at small objects or features – such as indications or discontinuities.

 

 

Human eyes, as well as other detection devices, use contrast to detect an indication during and NDT inspection so it is critical for there to be sufficient contrast between the indication and the rest of the surface. Otherwise it will be harder for the inspector to see the indication, especially if the indication is very fine.

The higher the contrast between the indication and the background, the more likely the inspector is to see the indication.

When it comes to magnetic particle and penetrant testing, there are two types of contrast to consider: brightness contrast and color contrast.

 

Brightness Contrast

Brightness refers to the amount of light reflected by a surface, which we see as how “light” or “dark” a color or image is.

An object with high brightness will reflect most of the light that hits its surface, making the object appear “light” or “bright”.

A low brightness object will absorb much of the light hitting it, so the object appears “dark”.

Brightness contrast is the difference in brightness of two adjacent surfaces.

In NDT inspections, it doesn’t matter if the indication is high or low brightness, it just matters that the rest of the surface, the background, is the opposite brightness.
 

Brightness Contrast in Visible Testing

Visible penetrant and magnetic particle indications are typically low brightness (examples: red penetrant or black mag particles) against a high brightness background (like the white background produced by developer or contrast paint).

The brightness contrast ratio for most visible light testing is 9:1, which is enough for the human eye to detect as long as the indication is large enough to be resolved.
 

Brightness Contrast in Fluorescent Testing

In fluorescent NDT inspections, the indication is very bright because the fluorescent material absorbs high-energy UV light, which is invisible to our eyes, and reflects this light back at a lower energy level, which is visible to our eyes and which we perceive as “glowing” light.

But since UV light contains more energy than visible light, when the fluorescent dye reflects visible light back to our eyes, they reflect MORE visible light, which creates the “glow” we see.

Ambient Light vs UV Black Light


Also, without any ambient visible light in the darkened inspection area, our eyes receive more of the reflected light from the fluorescent dye than if there was other visible white light present.

The “glowing” high brightness fluorescent indications contrast strongly with the low contrast background in the darkened environment to produce a large brightness contrast ratio of 200:1 or higher, significantly more than the ratio in visible light testing.

 

Color Contrast

Color contrast is the difference in color (wavelength) and saturation (amount of the wavelength) between two colors of equal brightness.

Despite the dramatic visual illusion I opened with, color contrast plays a smaller part in NDT detectability than brightness, but it is still an important factor to consider when selecting materials and lighting for a mag particle test or penetrant inspection.

However, just like with brightness, in NDT the most important factor for colors is how different the color of the indication is from the color of the rest of the part.

In visible and fluorescent penetrant inspections, developers are commonly used to improve color contrast because they produce a bright white background which reflects back significantly more light than the penetrant, consequently increasing the indication contrast. The same is true for white contrast paint used in visible magnetic particle inspections.

 

How Brightness and Contrast Impact NDT Inspections

 

In the color illusion at the beginning of this article you saw how surrounding colors and brightness can literally transform the things we see. Above you can see how much more an indication stands out when the background is much darker than the fluorescent indication.

The same principle applies when inspectors are evaluating a part for indications: what is going on around the indication WILL impact the inspector’s ability to identify the indication. This could be excess fluorescent background like the left-hand image above, too much visible light in the booth area, not using developer or white contrast paint to reduce surface background.

There are many factors which go into making sure the indication/background contrast is as high as possible for the most reliable inspections.

 

Tips – Put This Knowledge to Use

1. Use the right penetrant / magnetic particles for the application

It might be tempting to use the smallest magnetic particles or highest sensitivity penetrant available, but depending on the application, this might give you a lower quality inspection overall if you end up with glowing green parts with excess background or find lots of nonrelevant indications.

Make sure to be careful when selecting the right materials for your specific application to maximize your probability of finding all relevant indications.

For penetrants, it is important for the penetrant’s fluorescence to stand up through processing so indications are still crisp and bright when they are evaluated. Some penetrants can break down under heat (in a dryer) and under strong UV light (in a bright UV inspection booth), so make sure you have a robust penetrant that is designed to keep its fluorescence. This is especially important if your specs call for longer drying times, or if there is a time delay between when the parts are processed and when they are inspected.

For magnetic particles, look for durable magnetic particles that won’t break down over time. Less durable particles will have their fluorescent pigment separate from the iron particle over time, and will result in indications with less fluorescent and will cause excess background which can hide indications. It is also important that the particles don’t clump together, clumpy particles don’t move freely to indications and product a splotchy surface which can mask indications.
 

2. Always use developer or white contrast paint

Penetrant developers and white contrast paint are designed to improve the contrast in penetrant testing and visible mag particle inspections, and they work.

Look for a developer or white contrast paint that gives bright-white, even, opaque coverage. With a good developer or white contrast paint you won’t be able see the part surface at all, even with just a thin coating of product.

Aim to apply the thinnest layer of developer or white contrast paint possible which still gives you fully opaque coverage.
 

3. Make sure your carrier, cleaner, etc. is NDT-approved

Make sure the only material with fluorescence is your penetrant or magnetic particles.

Non-NDT-specific carrier oils often fluoresce under UV light, which creates an automatic background on any part surface and interferes with the inspection. The same is true for any additive or cleaner which is put on the surface of the part.

Don’t ruin a carefully thought out and executed inspection by using a non-NDT-approved carrier, cleaner or additive.

 

Non-destructive testing is an industry with numerous controls and standard requirements, for good reason! When safety is on the line it is important for everyone connected with NDT to do their part to make sure every inspection is done right.

The next time you set up a mag particle test or perform a penetrant inspection, give some thought to background, brightness and color and ask yourself if you are certain you or your inspectors are seeing everything you need to find.

 

Do you have a story about how background impacted one of your NDT inspections? 
What tips do you have for improving contrast in mag particle or penetrant inspections?

Share your knowledge in the comments section below.

 

 

Acknowledgments

Check out the original article I read on the illusion mentioned in the first section, The Green You See Is Not The Green You See, for more information on this experiment and its underlying causes. Thank you to Tania Lombrozo for allowing me to use excerpts from this original post.

Thank you also to Akiyoshi Kitaoka for giving us permission to use his “Green Spirals” image.

Lastly, I used the new ASNT Nondestructive Testing Handbook on Liquid Penetrant Testing (in color!) as a reference for this article and highly recommend it.

Want to stay up on the latest NDT insights and articles from Magnaflux? Subscribe to Magnaflux updates get fresh news delivered to your inbox.

Please wait while we gather your results.

Related Blog Entries

Dye Penetrant Infographic

The Ultimate Guide to Visible Dye Penetrant Testing [Infographic]

Some handy tips for beginners who are new to visible dye penetrant testing or NDT pros who want an easy reference guide.

Read More...

NDT Carrier Oil Fluid for Mag Particle Testing

Frequently Asked Questions About NDT Carrier Fluid

In this article, we explain what an NDT-approved carrier is and what sets it apart from commonly used, non-approved base oils

Read More...

Mag Particle Settling Volume Test

Mag Particle Carrier Settling Test Performance [Video]

See how three common magnetic particle testing carriers perform in a standard ASTM E1444 settling volume test.

Read More...

Nadcap AC7114 Rev J

How to Comply with NADCAP AC7114 Requirements for LED UV Lamps

An overview of Rev J changes to Nadcap AC7114 Non-Destructive Testing audit checklists for Penetrant and Magnetic Particle

Read More...

Magnetic Particle Crack Comparison

How Brightness and Contrast Impact NDT Inspections

How perception and vision can have a significant impact on probability of detection in non-destructive testing inspections.

Read More...

Magnetic Particle Inspection Demo

5 Quick Tips for Mag Particle Testing [Infographic]

Some handy tips for beginners who are new to magnetic particle testing or NDT pros who want an easy reference guide.

Read More...

Magnaflux Penetrant Testing

Exposing 10 Common Misunderstandings about Penetrant Testing

We reveal common misperceptions about liquid penetrant inspection we’ve seen in the field in recent years

Read More...

How to Troubleshoot & Resolve NDT Cleaning Problems

5 steps to identify and solve a NDT aqueous cleaning issue, and a troubleshooting guide with common problems + solutions

Read More...

Magnetic Particle Equipment Demo

Multi-directional Mag Particle Inspection Equipment [Video]

Watch the versatile MD-Series multi-directional mag particle inspection equipment in action. Learn how this wet bench can help you save time and money.

Read More...

6 Factors to Get the Best Aqueous Cleaning Results

In this article, we will go over the six key factors to a successful cleaning process and give you some Pros & Cons to consider for each

Read More...

Magnaflux Water Washable Penetrant

Water Washable versus Post Emulsifiable Penetrant – Which is Right for You?

Learn the differences between water-removable and non-water-washable liquid penetrant to figure out which is right for you

Read More...

5-Point Guide to Understanding Aqueous NDT Cleaning

A real-life approach to understanding industrial aqueous cleaning before and after nondestructive testing

Read More...

AMS 2644 Penetrant Sensitivity Levels

A Guide to AMS 2644 Penetrant Sensitivity Levels

Understand fluorescent liquid penetrant sensitivity levels and how to find the right one for your application

Read More...

Magnetic Particle Inspection Demo

How to Do Visible Magnetic Particle Inspections [Video]

See an overview of visible, dry-method magnetic particle inspection method according to ASTM E1444.

Read More...

Shedding Light on ASTM E2297 & E3022: A Guide to NDT UV Lamp Standards

An overview of two of the most common standards for NDT UV light sources, ASTM E2297 and ASTM E3022.

Read More...

Magnetic Particle Inspection Demo

How to Do Fluorescent Mag Particle Inspections [Video]

Watch a demonstration of the magnetic particle inspection method according to ASTM E1444 with basic steps for NDT using fluorescent magnetic particles.

Read More...

How to Select the Right UV-A Lamp for Your NDT Needs

4 things to consider when looking for a new LED UV light for fluorescent penetrant inspection or magnetic particle testing.

Read More...

Penetrant Testing Demo

How to Do Fluorescent Liquid Penetrant Testing [Video]

Watch a demonstration of the penetrant inspection method according to ASTM E1417, including basic steps for NDT with an AMS 2644 Type 1 penetrant.

Read More...

Why Does ASTM E3022 Require a Filter for LED UV Lamps?

Learn about the importance of UV-a pass filters, and why ASTM E3022 requires all LED UV-A lamps to have them.

Read More...

How to Do Preventative Maintenance for Magnetic Particle Equipment

Read how regular upkeep on mag particle equipment is critical for non-destructive testing to safe guard inspections & reduce downtime.

Read More...

Leak-Detection-Penetrant-Testing

Leak Detection with Penetrant Testing Process

Read more about using penetrant testing products to inspect for leaks by using fluorescent or visible/colored penetrant to enhance visual detection of leaks.

Read More...

Multidirectional Magnetization for Magnetic Particle Inspection

Learn about multi-directional magnetization applications and how mag particle inspections can benefit from multi-vector magnetization.

Read More...

In Use Penetrant

How to Maintain Penetrant Testing System Performance

Learn how liquid penetrant testing consumable products get contaminated over time and what you can do to ensure your penetrant system performance.

Read More...

The following required items were not provided or are in the wrong format. Please provide the required responses and submit again:

Name:
  Please enter your name
  Please enter a valid email
Comment Title
Comment: 250 characters left
  Please enter a comment

Magnaflux

155 Harlem Avenue
Glenview, IL 60025, USA
Telephone: +1 847-657-5300
Fax: +1 847-657-5388
Contact Magnaflux Customer Service

Select Your Country North America Mexico Brazil China Europe Russia India New Zealand, Australia, Japan, Southeast Asia
© 2016 Magnaflux - all rights reserved.
top